Master thesis: Fleet-size and routing of electric commercial vehicles

Volvo Business Services AB / Datajobb / Göteborg
Observera att sista ansökningsdag har passerat.


Visa alla datajobb i Göteborg, Mölndal, Partille, Kungälv, Lerum eller i hela Sverige
Visa alla jobb hos Volvo Business Services AB i Göteborg, Mölndal, Kungsbacka, Borås, Trollhättan eller i hela Sverige

Background of thesis project
With the current trends of electrification of commercial heavy vehicles, mission planning and vehicle transport optimization are becoming more important because of inherent characteristics of electric vehicles, e.g., range-anxiety. It means that there is not only the objective on fuel consumption reduction or shortest distance, but also the existence of complicating constraints on the vehicle range, and the consideration of additional costs caused by visits to the charging stations, including waiting times, and additional driver wages. Therefore, the planning of electric vehicles' missions plays a larger role and is more complicated than the conventional vehicles.

A class of problems that can be suitable for planning the fleet mission is fleet-size and mix-vehicle routing problem (FSMVRP), which is extensively studied in the literature. A heterogeneous, or mixed, fleet refers to vehicles with different payload capacities (see [1]). In addition, this thesis aims at including vehicles with different powertrain, i.e., different battery sizes and ranges (e.g., [2]), and the fleet size being nonfixed.
Moreover, this thesis starts from a problem definition that is more general than the traditional routing problem and FSMVRP. For example, we will allow for multiple trips, i.e., a vehicle can travel on one or more cyclic routes more than once [3]; a node is allowed to be visited by the same or other vehicles more than once, i.e., split pick-ups and deliveries [4]; some of the nodes have charging stations that might or might not be visited [5]; at loading-unloading nodes, there is a constraint of the type of loading-unloading [3], so not all vehicles can visit all nodes. The demands at nodes can be pick-up or delivery or both and they may exceed vehicle capacities [6]. The transportation network and a possible solution of the optimized fleet, route, number of trips, and location charging stations is illustrated in Fig. 1.

Fig. 1, illustration of the transportation network and the optimized fleet, routes, number of trips and location of charging stations [7].


Description of thesis work
The purpose of this thesis can be summarized as follows.
Designing an optimization model for minimizing the fleet transportation cost comprising electric energy cost and driver wage (or equivalent vehicle up-time cost) to find the best fleet size and composition and missions, i.e., routes, visited nodes, amounts of pick-ups and deliveries, visited charging stations, and number of trips to meet the network daily demand. The number of vehicles visiting a node, or a charging station is limited. For calculating energy consumption, a given on-road dynamic vehicle model shall be used considering road topography, vehicle powertrain and vehicle starts and stops.
Suggesting classical optimization solution methods, such as Benders or column generation reformulations, to decompose and solve the extended FSMVRP. The suggested methods need to be tested on a benchmark problem with a low number of nodes and vehicle types, in order to be solved within a reasonable computation time.

See the list of bibliography for related articles. The work will be carried out at Volvo Group Trucks Technology, Sweden. The thesis is recommended for one or two students with a strong background in mathematics and mathematical optimization with good programming skills. Prior experience with programming in Python, control theory, and modeling/simulation is meritorious.

Thesis Level: Master and/or Bachelor

Language:

Starting date: Jan 2023- Jun 2023

Number of students:1

Tutor
Toheed Ghandriz - Volvo GTT
tel: +46 765536649
mail: toheed.ghandriz@volvo.com

Leo Laine - Volvo GTT
tel: +46 31 323 53 11
mail: leo.laine@volvo.com

Så ansöker du
Sista dag att ansöka är 2023-12-07
Klicka på denna länk för att göra din ansökan

Omfattning
Detta är ett heltidsjobb.

Arbetsgivare
Volvo Business Services AB (org.nr 556029-5197)
405 08  GÖTEBORG

Arbetsplats
Volvo Group

Jobbnummer
8276923

Observera att sista ansökningsdag har passerat.

Prenumerera på jobb från Volvo Business Services AB

Fyll i din e-postadress för att få e-postnotifiering när det dyker upp fler lediga jobb hos Volvo Business Services AB: